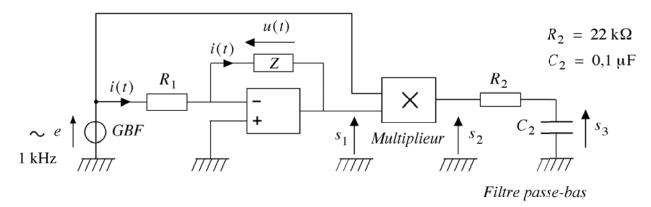

T.P. n°9: MULTIPLIEUR


1) MESURES D'IMPÉDANCES

Soit l'impédance inconnue qui est prête dans une « boîte noire » :

$$\underline{Z} = Z e^{j\varphi}$$
 ou $\underline{Z} = R + jX$

a) MESURE AVEC UN MULTIPLIEUR:

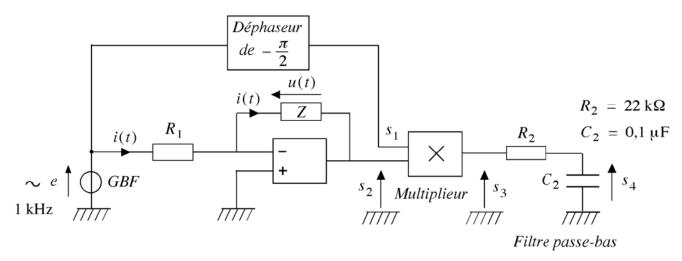
- Mesure de la résistance R de l'impédance Z:

- Étude théorique :

Un voltmètre en alternatif mesure la tension efficace $E_{\it eff}$ délivrée par le GBF.

Un voltmètre en continu mesure la tension s_3 à la sortie du filtre passe-bas.

Montrer que la résistance R de l'impédance est égale à :


$$R = -\frac{V_0 s_3}{E_{eff}^2} R_1$$

- Manipulations:

- v Choisir une fréquence égale à 1000 Hz.
- v Déterminer la résistance R.

- Mesure de la réactance X de l'impédance Z:

Lycée Clemenceau P.S.I. 2 TP n° 9 – Multiplieur page 2

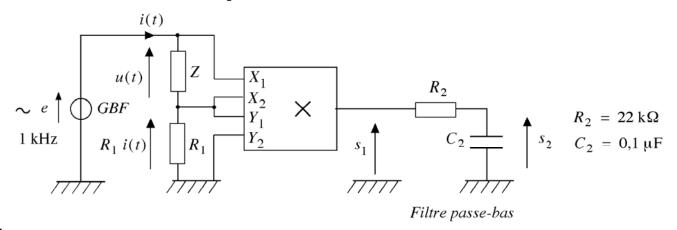
Le filtre déphaseur est prêt à l'emploi ; il est dans une « boîte noire ». Il possède un potentiomètre qui permet d'ajuster le déphasage en fonction de la fréquence.

- Étude théorique :

Un voltmètre en alternatif mesure la tension efficace $E_{\it eff}$ délivrée par le GBF.

Un voltmètre en continu mesure la tension s_4 à la sortie du filtre passe-bas.

Montrer que la réactance X de l'impédance est égale à :


$$X = \frac{V_0 R_1 s_4}{E_{eff}^2}$$

- Manipulations:

- v Choisir une fréquence égale à 1000 Hz.
- Régler le potentiomètre du déphaseur pour que son déphasage soit égal à $-\frac{\pi}{2}$.
- $_{\text{\tiny V}}$ Déterminer la réactance X.

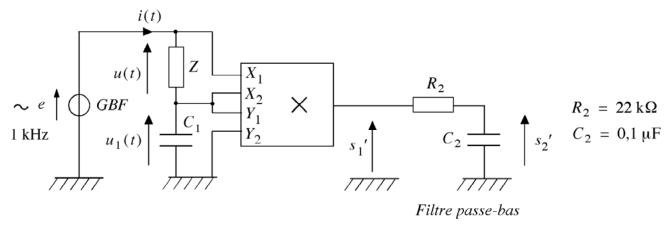
b) AUTRE MONTAGE (ces montages ne fonctionnent pas en pratique!):

- Mesure de la résistance R de l'impédance Z:

- Étude théorique :

Un voltmètre en alternatif mesure la tension efficace V_1 aux bornes de la résistance R_1 .

Un voltmètre en continu mesure la tension s_2 à la sortie du filtre passe-bas.


Montrer que la résistance R de l'impédance est égale à :

$$R = \frac{V_0 s_2}{V_1^2} R_1$$

- Manipulations :

- v Choisir une fréquence égale à 1000 Hz.
- $_{\text{v}}$ Déterminer la résistance R.

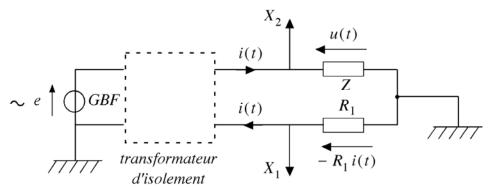
- Mesure de la réactance X de l'impédance Z:

- Étude théorique :

Un voltmètre en alternatif mesure la tension efficace $\ V_1$ aux bornes du condensateur $\ C_1$.

Un voltmètre en continu mesure la tension s_2 ' à la sortie du filtre passe-bas.

Montrer que la réactance X de l'impédance est égale à :


$$X = -\frac{V_0 \, s_2'}{C_1 \, \omega \, V_1'^2}$$

- Manipulations:

- v Choisir une fréquence égale à 1000 Hz.
- $_{\text{v}}$ Déterminer la réactance X.

c) MESURE AVEC UN OSCILLOSCOPE:

L'utilisation d'un oscilloscope pour mesurer une impédance pose des problèmes de masse. Il faut alors utiliser un transformateur d'isolement.

Lycée Clemenceau P.S.I. 2 TP n° 9 – Multiplieur page 4

- Étude théorique :

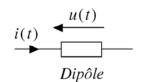
Le courant i(t) est sinusoïdal: $i(t) = I_m \cos(\omega t)$

- Voie 1: $X_1 = -R_1 I_m \cos(\omega t)$

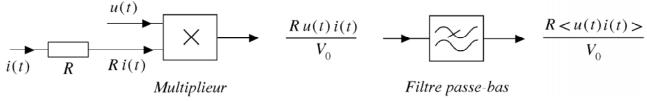
 $X_1 = R_1 I_m \cos(\omega t + \pi)$

- Voie 2: $X_2 = ZI_m \cos(\omega t + \varphi)$

En faisant le rapport des amplitudes, on en déduit \mathbb{Z}/\mathbb{R}_1 .

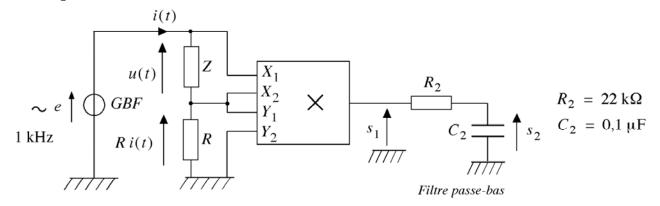

En mesurant le déphasage, on en déduit φ .

- Manipulations:


- v Choisir une fréquence égale à 1000 Hz.
- v Déterminer le module Z et le déphasage φ .

2) MESURES DE PUISSANCES ÉLECTRIQUES

La puissance instantanée P(t) reçue par un dipôle est mesurable avec un multiplieur.



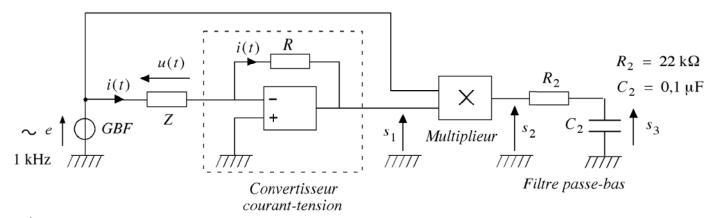
La puissance moyenne P reçue par un dipôle est obtenue après un filtrage passe-bas.

En effet, la puissance instantanée P(t) est un signal périodique ; on le décompose en série de Fourier. Sa valeur moyenne correspond au terme constant. Pour ne garder que ce terme constant, on élimine tous les harmoniques avec un filtre passe-bas de fréquence de coupure suffisamment basse. Un voltmètre en continu permet de mesurer la puissance moyenne reçue par le dipôle.

$\lambda 1^{er}$ montage:

- Étude théorique :

Un voltmètre en continu mesure la tension s_2 à la sortie du filtre passe-bas.


Montrer que la puissance moyenne $\langle P \rangle$ consommée dans l'impédance Z est égale à :

$$\langle P \rangle = \frac{V_0 \, s_2}{R}$$

- Manipulations:

- v Choisir une fréquence égale à 1000 Hz.
- v Déterminer la puissance moyenne $\langle P \rangle$ consommée dans l'impédance Z.

$\lambda 2^{eme}$ montage:

- Étude théorique :

Un voltmètre en continu mesure la tension s_3 à la sortie du filtre passe-bas.

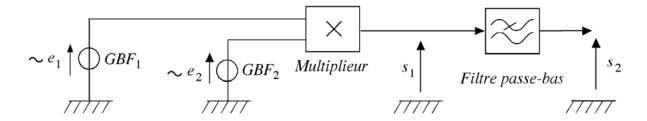
Montrer que la puissance moyenne $\langle P \rangle$ consommée dans l'impédance Z est égale à :

$$\langle P \rangle = -\frac{V_0 s_3}{R}$$

- Manipulations:

- v Choisir une fréquence égale à 1000 Hz.
- Déterminer la puissance moyenne $\langle P \rangle$ consommée dans l'impédance Z.

3) DÉTECTEUR DE SINUSOÏDES


a) Principe:

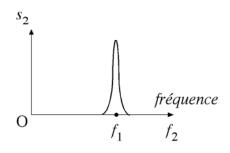
Soit le montage ci-dessous.

Le filtre passe-bas a une fréquence de coupure f_c très basse.

Le GBF $_1$ délivre une tension sinusoïdale de fréquence f_1 inconnue.

Le GBF $_2$ délivre une tension sinusoïdale de fréquence ajustable f_2 .

Sortie du multiplieur :

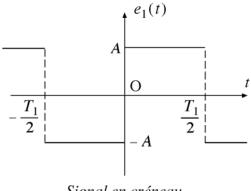

Le spectre des fréquences de $s_1(t)$ a deux raies de fréquences $f_2 + f_1$ et $|f_2 - f_1|$.

Si la fréquence $\ f_2$ est proche de la fréquence $\ f_1$ inconnue, alors :

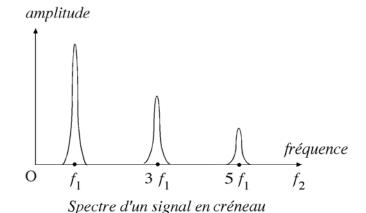
$$|f_2 - f_1| < f_1 < f_2 + f_1$$

Si la fréquence f_2 est égale à la fréquence f_1 inconnue, alors la sortie s_2 du filtre passe-bas est maximale.

En utilisant la wobulation (fonction sweep), le GBF₂ balaye automatiquement le domaine des fréquences (par exemple de 0 à 10 kHZ). Il délivre également une tension dont l'amplitude est proportionnelle à la fréquence f_2 ; cette tension est envoyée en voie X d'un oscilloscope.



Le signal de sortie s_2 du filtre passe-bas est envoyé en voie Y de l'oscilloscope. En mode XY, on obtient la courbe précédente.


b) Application à l'analyse harmonique :

Le signal $e_1(t)$ est maintenant périodique et non sinusoïdal. On peut donc le décomposer en série de Fourier. On observe alors les différentes sinusoïdes qui composent le signal $e_1(t)$.

Cas où le GBF₁ délivre un signal en créneaux :

Signal en créneau

